Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.381
Filtrar
2.
Biomech Model Mechanobiol ; 23(1): 271-286, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37925376

RESUMO

The capacity of small cerebral arteries (SCAs) to adapt to pressure fluctuations has a fundamental physiological role and appears to be relevant in different pathological conditions. Here, we present a new computational model for quantifying the link, and its contributors, between luminal pressure and vascular tone generation in SCAs. This is assembled by combining a chemical sub-model, representing pressure-induced smooth muscle cell (SMC) signalling, with a mechanical sub-model for the tone generation and its transduction at tissue level. The devised model can accurately reproduce the impact of luminal pressure on different cytoplasmic components involved in myogenic signalling, both in the control case and when combined with some specific pharmacological interventions. Furthermore, the model is also able to capture and predict experimentally recorded pressure-outer diameter relationships obtained for vessels under control conditions, both in a Ca 2 + -free bath and under drug inhibition. The modularity of the proposed framework allows the integration of new components for the study of a broad range of processes involved in the vascular function.


Assuntos
Músculo Liso Vascular , Vasoconstrição , Músculo Liso Vascular/fisiologia , Vasoconstrição/fisiologia , Artérias Cerebrais , Citosol
3.
Transl Res ; 264: 1-14, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37690706

RESUMO

Cardiovascular calcification is a significant public health issue whose pathophysiology is not fully understood. NOR-1 regulates critical processes in cardiovascular remodeling, but its contribution to ectopic calcification is unknown. NOR-1 was overexpressed in human calcific aortic valves and calcified atherosclerotic lesions colocalizing with RUNX2, a factor essential for osteochondrogenic differentiation and calcification. NOR-1 and osteogenic markers were upregulated in calcifying human valvular interstitial cells (VICs) and human vascular smooth muscle cells (VSMCs). Gain- and loss-of-function approaches demonstrated that NOR-1 negatively modulates the expression of osteogenic genes relevant for the osteogenic transdifferentiation (RUNX2, IL-6, BMP2, and ALPL) and calcification of VICs. VSMCs from transgenic mice overexpressing NOR-1 in these cells (TgNOR-1VSMC) expressed lower basal levels of osteogenic genes (IL-6, BMP2, ALPL, OPN) than cells from WT littermates, and their upregulation by a high-phosphate osteogenic medium (OM) was completely prevented by NOR-1 transgenesis. Consistently, this was associated with a dramatic reduction in the calcification of both transgenic VSMCs and aortic rings from TgNOR-1VSMC mice exposed to OM. Atherosclerosis and calcification were induce in mice by the administration of AAV-PCSK9D374Y and a high-fat/high-cholesterol diet. Challenged-TgNOR-1VSMC mice exhibited decreased vascular expression of osteogenic markers, and both less atherosclerotic burden (assessed in whole aorta and lesion size in aortic arch and brachiocephalic artery) and less vascular calcification (assessed either by near-infrared fluorescence imaging or histological analysis) than WT mice. Our data indicate that NOR-1 negatively modulates the expression of genes critically involved in the osteogenic differentiation of VICs and VSMCs, thereby restraining ectopic cardiovascular calcification.


Assuntos
Estenose da Valva Aórtica , Calcificação Vascular , Animais , Humanos , Camundongos , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Interleucina-6/genética , Músculo Liso Vascular/fisiologia , Osteogênese/genética , Pró-Proteína Convertase 9/genética , Regulação para Cima , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
4.
FASEB J ; 37(9): e23125, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37535015

RESUMO

The evergreen plant rosemary (Salvia rosmarinus) has been employed medicinally for centuries as a memory aid, analgesic, spasmolytic, vasorelaxant and antihypertensive, with recent preclinical and clinical evidence rationalizing some applications. Voltage-gated potassium (Kv) channels in the KCNQ (Kv7) subfamily are highly influential in the nervous system, muscle and epithelia. KCNQ4 and KCNQ5 regulate vascular smooth muscle excitability and contractility and are implicated as antihypertensive drug targets. Here, we found that rosemary extract potentiates homomeric and heteromeric KCNQ4 and KCNQ5 activity, resulting in membrane hyperpolarization. Two rosemary diterpenes, carnosol and carnosic acid, underlie the effects and, like rosemary, are efficacious KCNQ-dependent vasorelaxants, quantified by myography in rat mesenteric arteries. Sex- and estrous cycle stage-dependence of the vasorelaxation matches sex- and estrous cycle stage-dependent KCNQ expression. The results uncover a molecular mechanism underlying rosemary vasorelaxant effects and identify new chemical spaces for KCNQ-dependent vasorelaxants.


Assuntos
Plantas Medicinais , Rosmarinus , Ratos , Animais , Músculo Liso Vascular/fisiologia , Canais de Potássio KCNQ , Vasodilatadores/farmacologia
5.
J Pharmacol Toxicol Methods ; 123: 107290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37442214

RESUMO

INTRODUCTION: There is a great need for new approaches early in drug discovery that have the potential to improve clinical translation of compound-mediated cardiovascular effects. Current approaches frequently rely on in vivo animal models or in vitro tissue bath preparations, both of which are low throughput and costly. An in vitro surrogate screen for blood pressure using primary human cells may serve as a higher throughput method to quickly select compounds void of this secondary pharmacology and potentially improve late-stage drug development outcomes. METHODS: In this study, we investigated 10 compounds with published in vivo blood pressure effects in a commercially available collagen contraction assay and evaluated rat, human, and canine (aortic) vascular smooth muscle cells (VSMCs). The aim of this study was to evaluate consistency between species and test their ability to predict the effects of known human vasodilators and constrictors. VSMCs were embedded at the same cell density in a collagen matrix which then floated freely in media containing test compounds. Collagen discs contracted faster than vehicle treated controls when incubated with a constrictor, and slower in the presence of a dilator. RESULTS: Rat VSMCs responded as predicted of a VSMC-only culture to 9 out of 10 compounds. Human VSMCs responded as predicted to 8 out of 10 compounds, and canine VSMCs responded to 7 out of 10 compounds. DISCUSSION: Our results suggest that rat VSMCs predict 90% of the effects of known vasoactive compounds in the collagen contraction assay while human and canine VSMCs were slightly less predictive (80% and 70%, respectively). Although blood pressure regulation is a multi-faceted and complex process, our data suggests the collagen smooth muscle contraction assay is useful as a qualitative early screen of compounds that act directly on smooth muscle cells of the arterial vasculature.


Assuntos
Colágeno , Músculo Liso Vascular , Ratos , Humanos , Animais , Cães , Músculo Liso Vascular/fisiologia , Pressão Sanguínea , Células Cultivadas , Colágeno/farmacologia , Contração Muscular
6.
FASEB J ; 37(7): e23028, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37310356

RESUMO

Leucine-rich repeat containing 8A (LRRC8A) volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A associates with NADPH oxidase 1 (Nox1) and supports extracellular superoxide production. We tested the hypothesis that VRACs modulate TNFα signaling and vasomotor function in mice lacking LRRC8A exclusively in vascular smooth muscle cells (VSMCs, Sm22α-Cre, Knockout). Knockout (KO) mesenteric vessels contracted normally but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). Forty-eight hours of ex vivo exposure to TNFα (10 ng/mL) enhanced contraction to norepinephrine (NE) and markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 µM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 33 proteins that interacted with LRRC8A. Among them, the myosin phosphatase rho-interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots. siLRRC8A or CBX treatment decreased RhoA activity in VSMCs, and MYPT1 phosphorylation was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. Interaction of LRRC8A with MPRIP may allow redox regulation of the cytoskeleton by linking Nox1 activation to impaired vasodilation. This identifies VRACs as potential targets for treatment or prevention of vascular disease.


Assuntos
Músculo Liso Vascular , Animais , Camundongos , Acetilcolina/farmacologia , Ânions , Proteínas de Membrana/genética , Camundongos Knockout , Fosfatase de Miosina-de-Cadeia-Leve , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia
7.
Cells ; 12(8)2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37190105

RESUMO

Perivascular adipose tissue (PVAT) is a specialized type of adipose tissue that surrounds most mammalian blood vessels. PVAT is a metabolically active, endocrine organ capable of regulating blood vessel tone, endothelium function, vascular smooth muscle cell growth and proliferation, and contributing critically to cardiovascular disease onset and progression. In the context of vascular tone regulation, under physiological conditions, PVAT exerts a potent anticontractile effect by releasing a plethora of vasoactive substances, including NO, H2S, H2O2, prostacyclin, palmitic acid methyl ester, angiotensin 1-7, adiponectin, leptin, and omentin. However, under certain pathophysiological conditions, PVAT exerts pro-contractile effects by decreasing the production of anticontractile and increasing that of pro-contractile factors, including superoxide anion, angiotensin II, catecholamines, prostaglandins, chemerin, resistin, and visfatin. The present review discusses the regulatory effect of PVAT on vascular tone and the factors involved. In this scenario, dissecting the precise role of PVAT is a prerequisite to the development of PVAT-targeted therapies.


Assuntos
Peróxido de Hidrogênio , Músculo Liso Vascular , Animais , Humanos , Músculo Liso Vascular/fisiologia , Tecido Adiposo/fisiologia , Adiponectina , Epoprostenol , Mamíferos
8.
Biomech Model Mechanobiol ; 22(3): 1049-1065, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36892587

RESUMO

In this paper, a novel chemo-mechanical model is proposed for the description of the stretch-dependent chemical processes known as Bayliss effect and their impact on the active contraction in vascular smooth muscle. These processes are responsible for the adaptive reaction of arterial walls to changing blood pressure by which the blood vessels actively support the heart in providing sufficient blood supply for varying demands in the supplied tissues. The model is designed to describe two different stretch-dependent mechanisms observed in smooth muscle cells (SMCs): a calcium-dependent and a calcium-independent contraction. For the first one, stretch of the SMCs leads to an inlet of calcium ions which activates the myosin light chain kinase (MLCK). The increased activity of MLCK triggers the contractile units of the cells resulting in the contraction on a comparatively short time scale. For the calcium-independent contraction mechanism, stretch-dependent receptors of the cell membrane stimulate an intracellular reaction leading to an inhibition of the antagonist of MLCK, the myosin light chain phosphatase resulting in a contraction on a comparatively long time scale. An algorithmic framework for the implementation of the model in finite element programs is derived. Based thereon, it is shown that the proposed approach agrees well with experimental data. Furthermore, the individual aspects of the model are analyzed in numerical simulations of idealized arteries subject to internal pressure waves with changing intensities. The simulations show that the proposed model is able to describe the experimentally observed contraction of the artery as a reaction to increased internal pressure, which can be considered a crucial aspect of the regulatory mechanism of muscular arteries.


Assuntos
Cálcio , Músculo Liso Vascular , Cálcio/metabolismo , Pressão Sanguínea , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Artérias/metabolismo , Contração Muscular/fisiologia
9.
Brain Struct Funct ; 228(2): 475-492, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36380034

RESUMO

Although great efforts to characterize the embryonic phase of brain microvascular system development have been made, its postnatal maturation has barely been described. Here, we compared the molecular and functional properties of brain vascular cells on postnatal day (P)5 vs. P15, via a transcriptomic analysis of purified mouse cortical microvessels (MVs) and the identification of vascular-cell-type-specific or -preferentially expressed transcripts. We found that endothelial cells (EC), vascular smooth muscle cells (VSMC) and fibroblasts (FB) follow specific molecular maturation programs over this time period. Focusing on VSMCs, we showed that the arteriolar VSMC network expands and becomes contractile resulting in a greater cerebral blood flow (CBF), with heterogenous developmental trajectories within cortical regions. Samples of the human brain cortex showed the same postnatal maturation process. Thus, the postnatal phase is a critical period during which arteriolar VSMC contractility required for vessel tone and brain perfusion is acquired and mature.


Assuntos
Células Endoteliais , Músculo Liso Vascular , Humanos , Camundongos , Animais , Músculo Liso Vascular/fisiologia , Encéfalo/irrigação sanguínea , Contração Muscular
10.
Sci Adv ; 8(45): eabn6579, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36351019

RESUMO

Although major organ toxicities frequently arise in patients treated with cytotoxic or targeted cancer therapies, the mechanisms that drive them are poorly understood. Here, we report that vascular endothelial cells (ECs) are more highly primed for apoptosis than parenchymal cells across many adult tissues. Consequently, ECs readily undergo apoptosis in response to many commonly used anticancer agents including cytotoxic and targeted drugs and are more sensitive to ionizing radiation and BH3 mimetics than parenchymal cells in vivo. Further, using differentiated isogenic human induced pluripotent stem cell models of ECs and vascular smooth muscle cells (VSMCs), we find that these vascular cells exhibit distinct drug toxicity patterns, which are linked to divergent therapy-induced vascular toxicities in patients. Collectively, our results demonstrate that vascular cells are highly sensitive to apoptosis-inducing stress across life span and may represent a "weakest link" vulnerability in multiple tissues for development of toxicities.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Adulto , Humanos , Músculo Liso Vascular/fisiologia , Células Endoteliais , Longevidade , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Cultivadas , Neoplasias/etiologia
11.
Curr Top Membr ; 90: 123-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36368871

RESUMO

Vascular smooth muscle cells express several isoforms of a number of classes of K+ channels. Potassium channels play critical roles in the regulation of vascular smooth muscle contraction as well as vascular smooth muscle cell proliferation or phenotypic modulation. There is ample evidence that it is Ca2+ that enables these two seemingly disparate functions to be tightly coupled both in healthy and disease processes. Because of the central position that potassium channels have in vasocontraction, vasorelaxation, membrane potential, and smooth muscle cell proliferation, these channels continue to possess the potential to serve as novel therapeutic targets in cardiovascular disease. While there are questions that remain regarding the complete interactions between K+ channels, vascular regulation, smooth muscle cell proliferation, and phenotypic modulation in physiological and pathophysiological conditions, a broad understanding of the contributions of each class of K+ channel to contractile and proliferative states of the vasculature has been reached. This brief review will discuss the current understanding of the role of K+ channels in vascular smooth muscle cells in health and disease using the porcine vascular smooth muscle cell model with particular attention to new scientific discoveries contributed by the authors regarding the effect of endurance exercise on the function of the K+ channels.


Assuntos
Aterosclerose , Músculo Liso Vascular , Suínos , Animais , Músculo Liso Vascular/fisiologia , Canais de Potássio/metabolismo , Potenciais da Membrana , Contração Muscular , Aterosclerose/metabolismo
12.
Curr Top Membr ; 90: 65-93, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36368875

RESUMO

Diabetic vasculopathy is a significant cause of morbidity and mortality in the diabetic population. Hyperglycemia, one of the central metabolic abnormalities in diabetes, has been associated with vascular dysfunction due to endothelial cell damage. However, studies also point toward vascular smooth muscle as a locus for hyperglycemia-induced vascular dysfunction. Emerging evidence implicates hyperglycemia-induced regulation of vascular L-type Ca2+ channels CaV1.2 as a potential mechanism for vascular dysfunction during diabetes. This chapter summarizes our current understanding of vascular CaV1.2 channels and their regulation during physiological and hyperglycemia/diabetes conditions. We will emphasize the role of CaV1.2 in vascular smooth muscle, the effects of elevated glucose on CaV1.2 function, and the mechanisms underlying its dysregulation in hyperglycemia and diabetes. We conclude by examining future directions and gaps in knowledge regarding CaV1.2 regulation in health and during diabetes.


Assuntos
Diabetes Mellitus , Hiperglicemia , Humanos , Miócitos de Músculo Liso/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/farmacologia , Músculo Liso Vascular/fisiologia , Diabetes Mellitus/metabolismo , Hiperglicemia/metabolismo
13.
Cell Commun Signal ; 20(1): 180, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411459

RESUMO

Vascular smooth muscle cells (VSMCs) are the most abundant cell in vessels. Earlier experiments have found that VSMCs possess high plasticity. Vascular injury stimulates VSMCs to switch into a dedifferentiated type, also known as synthetic VSMCs, with a high migration and proliferation capacity for repairing vascular injury. In recent years, largely owing to rapid technological advances in single-cell sequencing and cell-lineage tracing techniques, multiple VSMCs phenotypes have been uncovered in vascular aging, atherosclerosis (AS), aortic aneurysm (AA), etc. These VSMCs all down-regulate contractile proteins such as α-SMA and calponin1, and obtain specific markers and similar cellular functions of osteoblast, fibroblast, macrophage, and mesenchymal cells. This highly plastic phenotype transformation is regulated by a complex network consisting of circulating plasma substances, transcription factors, growth factors, inflammatory factors, non-coding RNAs, integrin family, and Notch pathway. This review focuses on phenotypic characteristics, molecular profile and the functional role of VSMCs phenotype landscape; the molecular mechanism regulating VSMCs phenotype switching; and the contribution of VSMCs phenotype switching to vascular aging, AS, and AA. Video Abstract.


Assuntos
Aterosclerose , Lesões do Sistema Vascular , Humanos , Músculo Liso Vascular/fisiologia , Lesões do Sistema Vascular/metabolismo , Proliferação de Células , Fenótipo , Aterosclerose/metabolismo
14.
Biol Pharm Bull ; 45(9): 1354-1363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36047205

RESUMO

An increase in intracellular Ca2+ concentration ([Ca2+]i) activates Ca2+-sensitive enzymes such as Ca2+/calmodulin-dependent kinases (CaMK) and induces gene transcription in various types of cells. This signaling pathway is called excitation-transcription (E-T) coupling. Recently, we have revealed that a L-type Ca2+ channel/CaMK kinase (CaMKK) 2/CaMK1α complex located within caveolae in vascular smooth muscle cells (SMCs) can convert [Ca2+]i changes to gene transcription profiles that are related to chemotaxis. Although CaMK1α is expected to be the key molecular identity that can transport Ca2+ signals originated within caveolae to the nucleus, data sets directly proving this scheme are lacking. In this study, multicolor fluorescence imaging methods were utilized to address this question. Live cell imaging using mouse primary aortic SMCs revealed that CaMK1α can translocate from the cytosol to the nucleus; and that this movement was blocked by nifedipine or a CaMKK inhibitor, STO609. Experiments using two types of Ca2+ chelators, ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), combined with caveolin-1 knockout (cav1-KO) mice showed that local Ca2+ events within caveolae are required to trigger this CaMK1α nuclear translocation. Importantly, overexpression of cav1 in isolated cav1-KO myocytes recovered the CaMK1α translocation. In SMCs freshly isolated from mesenteric arteries, CaMK1α was localized mainly within caveolae in the resting state. Membrane depolarization induced both nuclear translocation and phosphorylation of CaMK1α. These responses were inhibited by nifedipine, STO609, cav1-KO, or BAPTA. These new findings strongly suggest that CaMK1α can transduce Ca2+ signaling generated within or very near caveolae to the nucleus and thus, promote E-T coupling.


Assuntos
Cavéolas , Músculo Liso Vascular , Animais , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Camundongos , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Nifedipino
15.
Compr Physiol ; 12(4): 3833-3867, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35959755

RESUMO

The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.


Assuntos
Células Endoteliais , Músculo Liso Vascular , Comunicação Celular , Células Endoteliais/fisiologia , Endotélio Vascular/fisiologia , Humanos , Músculo Liso Vascular/fisiologia , Vasoconstrição/fisiologia , Vasodilatação/fisiologia
16.
Biol Pharm Bull ; 45(11): 1692-1698, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989294

RESUMO

Ca2+-activated Cl- (ClCa) channels regulate membrane excitability and myogenic tone in vascular smooth muscles. TMEM16A-coding proteins are mainly responsible for functional ClCa channels in vascular smooth muscles, including portal vein smooth muscles (PVSMs). Caveolae are cholesterol-rich and Ω-shaped invaginations on the plasma membrane that structurally contributes to effective signal transduction. Caveolin 1 (Cav1) accumulates in caveolae to form functional complexes among receptors, ion channels, and kinases. The present study examined the functional roles of Cav1 in the expression and activity of ClCa channels in the portal vein smooth muscle cells (PVSMCs) of wild-type (WT) and Cav1-knockout (KO) mice. Contractile experiments revealed that the amplitude of spontaneous PVSM contractions was larger in Cav1-KO mice than WT mice. Under whole-cell patch-clamp configurations, ClCa currents were markedly inhibited by 1 µM Ani9 (a selective TMEM16A ClCa channel blocker) in WT and Cav1-KO PVSMCs. However, Ani9-sensitive ClCa currents were significantly larger in Cav1-KO PVSMCs than in WT PVSMCs. Expression analyses showed that TMEM16A expression levels were higher in Cav1-KO PVSMs than in WT PVSMs. Therefore, the caveolar structure formed by Cav1 negatively regulates the expression and activity of TMEM16A-mediated ClCa channels in vascular smooth muscle cells.


Assuntos
Anoctamina-1 , Caveolina 1 , Canais de Cloreto , Animais , Camundongos , Anoctamina-1/metabolismo , Cálcio/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Canais de Cloreto/genética , Camundongos Knockout , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Veia Porta/metabolismo
17.
Am J Physiol Heart Circ Physiol ; 323(3): H577-H584, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35904885

RESUMO

Perivascular adipose tissue (PVAT) is distinct from other adipose depots, as it has differential gene and protein profiles and vasoactive functions. We have shown that pregnancy affects the morphology of PVAT surrounding the uterine arteries (utPVAT) differentially than the morphology of nonperivascular reproductive adipose depots (i.e., periovarian adipose tissue, OVAT). Here, we hypothesized that pregnancy modifies the profile (size and molecular mass) of exosome-like extracellular vesicles released by utPVAT (Exo-utPVAT) compared with exosome-like extracellular vesicles released by OVAT (Exo-OVAT) and that primary uterine vascular smooth muscle cells (utVSMCs) can internalize Exo-utPVAT. Our findings indicate that utPVAT from pregnant and nonpregnant rats secrete exosome-like vesicles. Exo-utPVAT from pregnant rats were smaller (i.e., molecular size) and heavier (i.e., molecular mass) than those from nonpregnant rats, whereas pregnancy did not affect the size of Exo-OVAT. Immunocytochemistry and confocal microscopy showed that primary utVSMCs internalized Exo-utPVAT (both tissues from the same pregnant rat) labeled by the lipophilic tracer DiO. Treatment of isolated uterine arteries with Exo-utPVAT did not affect relaxation responses to acetylcholine in pregnant or nonpregnant rats. Collectively, these findings demonstrate a novel type of intercellular communication between Exo-utPVAT and utVSMCs and indicate pregnancy modulates the morphology and cargo of Exo-utPVAT.NEW & NOTEWORTHY Uterine perivascular adipose tissue secretes exosome-like vesicles, which are internalized by their adjacent uterine vascular smooth muscle cells. Consideration of the exosomal communication between adipose tissue and vascular smooth muscle cells in the uterine circulation in mathematical models and experimental designs may help us to improve understanding of mechanisms underlying uterine artery adaptive responses to a healthy pregnancy and during pregnancy complications.


Assuntos
Exossomos , Tecido Adiposo/metabolismo , Animais , Comunicação Celular , Feminino , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso , Gravidez , Ratos
18.
Methods Mol Biol ; 2429: 233-246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507165

RESUMO

Vascular smooth muscle cells (VSMCs), a highly mosaic tissue, arise from multiple distinct embryonic origins and populate different regions of our vascular network with defined boundaries. Accumulating evidence has revealed that the heterogeneity of VSMC origins contributes to region-specific vascular diseases such as atherosclerosis and aortic aneurysm. These findings highlight the necessity of taking into account lineage-dependent responses of VSMCs to common vascular risk factors when studying vascular diseases. This chapter describes a reproducible, stepwise protocol for the generation of isogenic VSMC subtypes originated from proepicardium, second heart field, cardiac neural crest, and ventral somite using human induced pluripotent stem cells. By leveraging this robust induction protocol, patient-derived VSMC subtypes of desired embryonic origins can be generated for disease modeling as well as drug screening and development for vasculopathies with regional susceptibility.


Assuntos
Aterosclerose , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia
19.
Proc Natl Acad Sci U S A ; 119(16): e2117435119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412911

RESUMO

Elevation of intracellular Ca2+ concentration ([Ca2+]i) activates Ca2+/calmodulin-dependent kinases (CaMK) and promotes gene transcription. This signaling pathway is referred to as excitation­transcription (E-T) coupling. Although vascular myocytes can exhibit E-T coupling, the molecular mechanisms and physiological/pathological roles are unknown. Multiscale analysis spanning from single molecules to whole organisms has revealed essential steps in mouse vascular myocyte E-T coupling. Upon a depolarizing stimulus, Ca2+ influx through Cav1.2 voltage-dependent Ca2+ channels activates CaMKK2 and CaMK1a, resulting in intranuclear CREB phosphorylation. Within caveolae, the formation of a molecular complex of Cav1.2/CaMKK2/CaMK1a is promoted in vascular myocytes. Live imaging using a genetically encoded Ca2+ indicator revealed direct activation of CaMKK2 by Ca2+ influx through Cav1.2 localized to caveolae. CaMK1a is phosphorylated by CaMKK2 at caveolae and translocated to the nucleus upon membrane depolarization. In addition, sustained depolarization of a mesenteric artery preparation induced genes related to chemotaxis, leukocyte adhesion, and inflammation, and these changes were reversed by inhibitors of Cav1.2, CaMKK2, and CaMK, or disruption of caveolae. In the context of pathophysiology, when the mesenteric artery was loaded by high pressure in vivo, we observed CREB phosphorylation in myocytes, macrophage accumulation at adventitia, and an increase in thickness and cross-sectional area of the tunica media. These changes were reduced in caveolin1-knockout mice or in mice treated with the CaMKK2 inhibitor STO609. In summary, E-T coupling depends on Cav1.2/CaMKK2/CaMK1a localized to caveolae, and this complex converts [Ca2+]i changes into gene transcription. This ultimately leads to macrophage accumulation and media remodeling for adaptation to increased circumferential stretch.


Assuntos
Canais de Cálcio Tipo L , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina , Cavéolas , Transcrição Gênica , Remodelação Vascular , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Cavéolas/metabolismo , Caveolina 1/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Acoplamento Excitação-Contração , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Neurônios/metabolismo , Fosforilação
20.
Microcirculation ; 29(3): e12756, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35289024

RESUMO

OBJECTIVE: The myogenic response sets the foundation for blood flow control. Recent findings suggest a role for G protein-coupled receptors (GPCR) and signaling pathways tied to the generation of reactive oxygen species (ROS). In this regard, this study ascertained the impact of NADPH oxidase (Nox) on myogenic tone in rat cerebral resistance arteries. METHODS: The study employed real-time qPCR (RT-qPCR), pressure myography, and immunohistochemistry. RESULTS: Gq blockade abolished myogenic tone in rat cerebral arteries, linking GPCR to mechanosensation. Subsequent work revealed that general (TEMPOL) and mitochondrial specific (MitoTEMPO) ROS scavengers had little impact on myogenic tone, whereas apocynin, a broad spectrum Nox inhibitor, initiated transient dilation. RT-qPCR revealed Nox1 and Nox2 mRNA expression in smooth muscle cells. Pressure myography defined Nox1 rather than Nox2 is facilitating myogenic tone. We rationalized that Nox1-generated ROS was initiating this response by impairing the ability of the CaV 3.2 channel to elicit negative feedback via BKCa . This hypothesis was confirmed in functional experiments. The proximity ligation assay further revealed that Nox1 and CaV 3.2 colocalize within 40 nm of one another. CONCLUSIONS: Our data highlight that vascular pressurization augments Nox1 activity and ensuing ROS production facilitates myogenic tone by limiting Ca2+ influx via CaV 3.2.


Assuntos
Músculo Liso Vascular , NADPH Oxidases , Animais , Artérias Cerebrais/metabolismo , Músculo Liso Vascular/fisiologia , Miografia , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...